Ecobricks

I’m Bricking It

“If the ocean dies, so do we” says Margaret Atwood, a novelist who has long been an environmental activist as well. In this, she’s not wrong.

Phytoplankton are microscopic, single-celled organisms that inhabit the sunlit layer of the sea, absorbing carbon dioxide through photosynthesis. Few people realise that organisms in our oceans provide almost as much oxygen as we get from trees.

Trouble is, humanity is busily changing the seas, just as we have done the land.

The sea is easy to overlook when considering the parts of the natural world that are threatened by human activity. Things that are thrown in either sink from sight or are borne away by tides and wind. Liquid wastes are diluted in a way that seems most convenient – if thinking only in the short term. In reality, the sea has been already seriously damaged.

The Ellen MacArthur Foundation warns us that by 2050 the plastic in our seas will outweigh the fish. Plastics are great materials with applications such as non-toxic toys, durable fittings on buildings and lightweight automotive components – but we also use plastics in many applications where their durability is a drawback. It’s entirely possible that some of the plastic items you throw away today will still be kicking around long after you’re dead and gone.

Single-use plastics come in for a lot of criticism, therefore, and while many of us try to do the right thing by sorting our waste, national recycling efforts are commonly centred upon clean, empty drink bottles: the easy job.

Few recycling centres can do anything much with plastic films, so the shrink-wrap protecting cucumbers, the individual wrappers on sweets and the peel-back tops on yoghurt pots are all just litter. These are lightweight, crinkly little oddments of plastic that blow around the place and have little real value to recyclers, so they are at an increased risk of ending up in the sea. For a long time I thought this was just the way things had to be: after all, what system could possibly cope with this assortment of plastics in small quantities?

Then I learned about making Ecobricks – taking a used plastic bottle and packing it full of waste plastic, squashed down with a stick. The practice appears to have begun in Guatemala around 2004, where the resulting ‘bricks’ were used in construction. It’s an approach that has spread – or perhaps been thought up simultaneously – throughout the developing world. In the form of an Ecobrick, plastic waste is locked away – at least for a while. If it’s built into a structure such that sunlight doesn’t reach it, it’ll be sequestered for decades… which has got to be better than letting it pollute the natural world.

Making an Ecobrick

Making an Ecobrick. I recommend using a wooden spoon to compress the contents as it’s easier to hold than a stick.

I started making Ecobricks for no particular reason other than to experiment. I knew that they wouldn’t be of much use in the UK because you’d never get a mortgage or home insurance on a building made from waste plastic. ‘Earthships’ – sustainable buildings made from recycled and natural materials – have never really caught on in the UK: there’s one in Fife and another in Brighton, but neither is residential in nature so it seems highly unlikely that anybody will ever use one of my Ecobricks in construction.

So why did I persevere, to the point where I’ve now made about ten Ecobricks? Because I discovered two remarkable things…

Firstly, a British household gets through a lot more plastic film than you probably think: those negligible quantities of crinkly plastic really add up and it’s easy to fill about two litres’ worth of Ecobricks a week. When you see all that plastic – and discover just how much it weighs – it’s not so easy to go on consigning it to landfill. Not that landfill works for plastics anyway: they photodegrade into smaller fragments and blow away, ending up in the soil or in the sea… which means our food chain.

Secondly, when you make Ecobricks you notice an immediate reduction in the total volume of waste that you produce. Taking out the trash is something you do a lot less often – and you never run out of bin space before collection is due. Clearly, when left uncompressed, all that plastic is taking up a lot of space.

You might say that I’m not helping matters because I’m taking a recyclable item (a plastic bottle) and filling it with waste that renders it non-recyclable.

Well, maybe… but there’s a good deal of difference between “recyclable” and “actually going to be recycled” – and since China closed its doors on waste imports, recycling rates have fallen. A shortage of single-use plastic bottles is not the limiting factor, so I think we can spare some.

The most absurd thing about all this is that waste plastics actually have value, and the technology to do something profitable with them already exists. Thermal depolymerisation isn’t choosy about feedstocks: waste such as mixed plastics, used tyres, sewage sludge and even abattoir leftovers can be converted into light oils, gases, steam and solid waste. This last is nicely sterilised, which significantly increases the usefulness of the process since even medical waste can be converted. There is money to be made from this.

Typical outputs from thermal depolymerisation, by feedstock

Typical outputs from thermal depolymerisation, by feedstock

As industrial processes go, this isn’t hard to do: water is added if the material is dry, and then everything is heated to 250°C in a pressure vessel. When the pressure is released rapidly the water evaporates and can be captured for reuse. Other outputs from the process include methane (typically used to fuel the heating of the next batch, although some is sold as biogas) and other hydrocarbons that can be separated by fractional distillation, yielding (among other things) a low-sulphur replacement for diesel fuel.

Or you can just pile everything in the ground and forget about it… although a landfill site isn’t always the final resting place of plastic waste; with under-investment and mismanagement it’s all too likely to end up being washed into the sea.

What I like about both Ecobricks and thermal depolymerisation is that they’re sufficiently low-tech that they can be employed anywhere – and in combination they offer the possibility of affordable energy and waste management. In a world where more than ninety percent of the plastic waste in the world’s oceans comes from just ten river systems in poorer countries, that’s got to be significant – but we all have a part to play.

Floating refuse in the Ganges

Sacred river: the Ganges

I’m going to keep on making Ecobricks, although my standards have slipped a bit now that I’m certain they won’t actually be used as building materials. (With compression resistance no longer an issue, I have decided to permit bubble wrap and expanded polystyrene in my Ecobricks. Also, if my bottles are a little less than 100% filled, it doesn’t matter.) While they’ll never be built into a wall, my “lazy Ecobricks” still offer a neat and tidy fuel source, if only I can find somebody to take them. Haig et al (2013) provides a valuable primer for those looking to understand how plastic waste can be processed into fuel, demonstrating that the solution is within our grasp if only local authorities will invest to turn a present-day liability into an asset.

So, how can they be persuaded? I’m thinking… civil disobedience. Back in 1971 a largely unknown group called Friends of the Earth achieved a publicity coup when they carried out a ‘bottle dump’ at the London offices of Schweppes, who had recently announced their intention of phasing out returnable, deposit-bearing bottles. (In those days, glass bottles.) Reuse has dwindled to almost nothing, but campaigning by groups such as FoE eventually got us bottle banks in 1977, and can banks in 1982.

Friends of the Earth protests, 1971

Friends of the Earth protests, 1971 [images: FoE]

Might a similar protest to start us on the road to sorting out the plastic films problem? Not laying the materials at the feet of the manufacturers, but at the doorstep of local authorities that haven’t put in place a proper recycling solution. If they have a depolymerisation solution in place, having a few hundred thousand bottles of clean, well-packed waste delivered to council premises will be a gift… but if they’re still just piling up waste plastic, their failure will soon become highly visible.

It’s time for the Ecobrick. Everywhere.

 

 

Reference:

Haig, S., Morrish, L., Morton, R., Onwuamaegbu, U., Speller, P., and Wilkinson, S. (2013) Plastics to oil products: Final report. Available online: http://www.zerowastescotland.org.uk/sites/default/files/Plastics%20to%20Oil%20Report.pdf (accessed 24/08/18)

Advertisements
Toy gorilla with bananas

Bananas for Bioplastic

We’ve heard recently that the ocean gyres where waste plastic is accumulating are larger than we thought, and plastic particles are now showing up in just about everything. Some believe that by 2050 there could be more plastic in the sea than fish. We’re getting in a bit of a pickle, here.

Corpse of an albatross chick, showing plastic stomach contents

Albatross chicks are starving to death, their stomachs filled with plastic waste. This is just one consequence of our love affair with plastics.

The UK can no longer avoid addressing its waste problems by exporting material to China: the government of the People’s Republic has brought in a ban, and already material is backing up in UK waste facilities. If 500,000 tonnes of waste plastic can no longer be sent ‘away’, what will happen to it?

In the short term, local authorities are going to find that disposal becomes very expensive. The UK waste industry simply doesn’t have the capacity to process the waste that will no longer go to China – and probably won’t have for several years.

In January, UK Prime Minister Theresa May announced a plan to eliminate the UK’s plastic waste by 2042, but can we really spare a quarter of a century before we go closed-loop and/or plastic free? You’d be forgiven for thinking that a quarter of a century suggests a parliament cynically kicking the can on down the road instead of getting to grips with the problem. Where is the roadmap for eliminating plastic waste? How will it be done? What might be the first piece of the puzzle has been revealed today, with the news that we can expect a deposit scheme for drinks bottles.

The European Union also has a strategy for plastics but it’s absolutely brand new – adopted on January 16th, 2018. It’s better than the goal for the UK in that it sets a closer target (2030) but thus far their documents appear to be very informative in detailing the problems, but far less specific in setting out solutions.

Personally, I think that one key element of a future in which we aren’t drowning in our own plastic waste is for bioplastic to become the norm – not just for big corporations with secret recipes in shiny steel vats, but for ordinary small businesses.

Where is the open-source recipe for a bio-based plastic that allows small businesses to replace their petroleum-based plastic products with something made from food waste, or agricultural byproducts?

By way of conducting a straw poll, I opened Apple’s ‘Maps’ application, centred on my home town, and used the ‘search’ function. The nearest business with ‘bioplastic’ in its name… was in Rome. I tried ‘biopolymer’ instead… and found a business in Montabaur, Germany. ‘Biobased?’ … three businesses in the Netherlands. In my neighbourhood it appears that the bioplastic revolution is going to be a long time coming.

I’ve been searching for something that would enable a grassroots bioplastic industry since 2014. Admittedly, it’s only an occasional hobby and not a research project as such, but I’ll try any homebrew bioplastic recipe I can find.

My latest web search revealed one that I’d never heard of before, made from banana peel. Needless to say, I added the ingredients to my weekly shopping.

The recipe comes to us courtesy of Achille Ferrante, and a Youtube video that you can see here. To summarise, you blend some banana peel, mix with water and boil for five minutes. You drain off the excess water, and then combine with vinegar, cinnamon, thyme and honey. A second application of heat brings about polymerisation, after which you squeeze the mixture into flat sheets and then dry it.

I undertook the procurement phase from memory, and bought parsley instead of thyme. (I blame Simon and Garfunkel.) Fortunately, we had some thyme in the house already, so I was able to proceed with the experiment. (The thyme is there as an anitfungal agent, something that I think is a highly desirable component: it’s not fun when bioplastic goes bad on you.)

First off, I ate three bananas. No hardship there! Some commenters in the online banana bioplastic community (a niche group if ever there was one) have suggested that the bananas should still be green, as the skins contain more starch at that point. That may be so, but I wasn’t prepared to eat under-ripe fruit. I reckon you could lob some cornflour into the mix if you really thought that more starch was needed, anyway.

Next, I cut up the banana skins, throwing away the ‘woody’ bits at the ends. The rest was blitzed in a blender. The next step in the instructions was to add water, but I found it simpler to put the water straight in the blender, as it made the banana mulch blend more readily. Given that the end result is meant to be a ‘fibrous bioplastic’ I chose not to blitz the banana peels into a complete ‘smoothie’, reasoning that some of its strength would likely come from embedded fibres.

Banana peel in a blender

The banana mulch tended to cling to the sides of the blender, defeating my efforts, so I added the water early.

Banana peel and water, being simmered

The smell of banana peel smoothie as it simmers is surprisingly good.

The mixture was then simmered on the stove for about five minutes, and could be seen to thicken. When the time was up I strained it, and pressed out as much water as possible. This left a thick paste, which I weighed.

Following the instructions, for each forty grams of banana peel paste I added 20ml of vinegar, a teaspoon of thyme, a teaspoon of cinnamon and a teaspoon of honey. Everything goes in a saucepan and is mixed together over a medium heat.

Honey, cinnamon and thyme, ready for mixing

One of the disappointments about banana peel bioplastic is that it requires quite a lot of ‘real food’ in addition to the waste material.

What I like about banana bioplastic is that it’s all ‘food’. You don’t have to worry about getting hold of a cheap saucepan or baking tray for your experiments, because you’re not using anything toxic. (Remember the milk plastic from my early experiments? To harden that properly you need formaldehyde…)

What I absolutely loved about making banana bioplastic was the smells in the kitchen: bananas, cinnamon, thyme and honey… what’s not to love? (Oh: the vinegar, maybe.) The problem with all this is that unlike a normal kitchen activity you don’t get anything to eat at the end. It may be a good idea to make the bioplastic in parallel with a regular baking activity – not least because then you’d get a hot oven for “free”, reducing the energy invested in the project.

The mixture is heated again, and stirred.

Delicious smells during the final heating phase. Wishing I was making cookies instead of bioplastic…

One obvious problem is that there’s an awful lot of ‘food’ in this bioplastic. Sure, I don’t eat banana skins, but herbs, spices and honey all cost money. Bioplastic made in this way demands a debate very similar to the one about biofuels that are grown in place of food crops: the industry would be difficult to justify on a hungry planet. (Even banana skins have food value as they are fed to pigs in some places.)

There’s also a lot of energy used in the processes I followed, but I won’t worry too much about that on the grounds that we’re doing this for science, and not in volume production. No doubt some efficiencies could be found if this were being made into an industrial process.

For science!

Next comes the bit that always makes my heart sink a little: drying time.

You see, where I come from, plastics don’t need to dry: thermoplastics liquefy when you apply heat, and they solidify obligingly when the temperature falls below their melting point. Air drying is not required. Until we can work out a way to substitute plants for petrochemicals without requiring alterations to manufacturing processes, we haven’t really succeeded.

But this is a stovetop bioplastic, so I had to follow the instructions and dry it.

Banana bioplastic on baking parchment.

Squish your bioplastic between some baking parchment, and place in the oven at 50°C for… about an eternity, as far as I can tell.

As instructed I put the mixture in the oven at 50°C, for 45 minutes. It was still just a warm, wet mess at this point, so I gave it another half hour. When it still wasn’t dry I switched to fan oven mode, reasoning that this ought to take away the moisture faster. The alleged bioplastic was barely stronger than cookie dough at this point, and my efforts to turn it over produced some breakage. I reshaped some of my test pieces from broken oddments this point, to see how workable it was. I found it to be sticky, but it was possible to shape the material.

Eventually I tired of waiting for the mixture to dry and increased the oven temperature to 100°C (not using the fan function). After half an hour the flat sections were noticeably drier, and had taken on a leathery feel. I turned them over and gave them another twenty minutes, then switched off the oven and left them in overnight.

In the morning, the thin sections were completely dry, but the larger pieces I had shaped were still a bit sticky. That’ll be the honey, I suppose. This would appear to be one of those “thin film” bioplastics, therefore.

I’m pleased to report that the flat samples really are plastic in nature, with flexibility and a surprising amount of resilience. Their fibrous nature seems to come overwhelmingly from the thyme, which can be seen throughout the material, rather like that old woodchip textured wallpaper we used to have in the seventies. In future I might try chopping the thyme up so that it doesn’t introduce so much roughness. Some bioplastic hackers suggest that thyme oil might be better, although this would introduce more moisture, so I think you’d need to experiment to get this right.

I was skeptical about this material: I suspected that I would simply find a mass of fibres, baked into a matrix with the honey acting as a ‘glue’ but I was wrong: the sheet of banana material really does behave like plastic. 

When bent, it flops around, showing a surprising amount of flexibility. That honey really has served as a plasticiser. It’s not what I’d call a durable material, but I’d say it’s more durable than I expected. (You won’t be sewing yourself a pair of bioplastic moccasins with this stuff.) Analogy for the purposes of conveying its engineering properties: it’s about as strong as fruit leather. (Funny, that…)

Bioplastic sample being rolled tightly.

Surprisingly tough, flexible bioplastic. Now, what are we going to do with it?

One highly desirable property is that it smells great! The cinnamon banishes any hint of the vinegar smell that we experienced with the milk plastic.

I don’t know what you’d actually do with this bioplastic, though, and that’s a worry. You could make biodegradable planting pots that turn to compost, maybe… but you can make those out of compressed peat, or even waste paper. That’s got to be better than faffing about with honey, cinnamon and all that cookery. Also, I think you’d need to raise your pest control game if you’re planning on leaving yummy cinnamon bioplastic in your garden…

This is a bioplastic solution still looking for a problem, then. It’s great stuff and I really enjoyed the experiment. I think we can learn a lot by copying the process shown in Achille Ferrante’s video… but we’re not going to start making genuinely useful home-brew toys or gadgets from it.

Readers may have better ideas for applications?

On the day that I made bioplastic, I put at least three plastic bottles in the recycling bin. After a single use, I’m giving away far better materials than I’m able to make from plant matter. Stable, strong, colour-fast petrochemical plastics that (for now) cost very little. Bioplastic still has a long way to go if it’s ever going make inroads into our plastics habit.

Stretcher Case

I was out walking with my son recently, and I pointed out where a row of iron stumps could be seen, protruding from the limestone capping on a low wall outside a civic building. As anyone who grew up in the UK knows, our built environment bears these scars from the early 1940s, when Britain found itself under siege and struggling to re-arm against the Nazis. Park railings and the gates of historic buildings were cut down and hauled away as part of the war effort.

Workmen remove railings from a park in the early 1940s

Then and now: removal of railings from public spaces

Giving up their railings proved to have a positive effect on the morale of the nation: it offered visible proof that something was being done, and virtually everyone was happy to join in. Vast quantities of iron were collected – but the evidence for it being used is somewhat scantier. Chemically speaking, there’s nothing wrong with reclaimed cast iron: it can be melted down and made into things like bomb casings… but the historical record that includes photographs and newsreel footage of people cheerfully giving up their railings isn’t matched by anything showing said railings arriving at the foundries in places such as Port Talbot or Sheffield.

Removing the railings at Buckingham Palace

Even Buckingham Palace joined in the recycling effort…

So where did the iron go? It’s hard to be certain: a few people have suggested that the government was caught out by the sheer quantity of material collected. They couldn’t use it all, but they appreciated the morale-boosting effect of the project and allowed it to continue. Were our park railings quietly dumped at sea? Some think so. As I researched this article, each anecdote that I followed up seemed only to reference another, with no hard evidence resulting: let’s just say that the dumping hypothesis is widely believed, among those who have expressed an interest. (The aluminium pots and pans that were also collected at this time do appear to have been made into Spitfires, however.)

Did the railing recycling scheme fail because supply exceeded demand? Perhaps so, but I didn’t want to complicate the issue for my six year-old. We just looked at the row of stumps sticking up out of the wall, and imagined the railings made into tanks and bombs – just as Lord Beaverbrook, Minister for Supply, must have intended.

There is another, still more complicated twist that I won’t bother the lad with, either – and for this nugget of knowledge we must thank what must be one of London’s most ‘niche’ interest groups, the Stretcher Railing Society (“For the promotion, protection and preservation of London’s ARP Stretcher Railings”).

A civil defence organisation set up in 1937,  Air Raid Precautions (ARP) prepared for the worst. This was at a time when it was believed that the bomber would always get through. In consequence over 600,000 stretchers were manufactured, to cope with the vast number of casualties that were expected.

These weren’t very comfortable stretchers: just a tubular framework covered with a metal mesh. Their utilitarian nature was quite deliberate, though, as they would be easier to decontaminate after a gas attack.

After the war, some of those stretchers were upcycled into railings. At perhaps a dozen locations in London, new housing estates acquired railings with a distinctive ‘bulge’ at the ends of every panel: these had been the feet of the stretchers, and they’re a dead giveaway that you’re looking at no ordinary bit of fence, but a piece of our history. They’re every bit as much a sign of the war as the funny little stubs of cut-away iron that still adorn so many of our public spaces.

Upcycled stretchers, made into railings

Upcycled stretcher-railings

Very early on in this blog, I felt the need to explain why recycling doesn’t really work. We can’t afford to think of an item that we’ve finished with as a collection of chemical elements, to be reduced to their simplest state before reuse. If we do that, we waste all the effort, ingenuity and – critically – the energy that went into shaping our stuff. Because recycling is so often downcycling (reuse of the material with degradation caused by contaminants) we make life a little bit harder each time we send our materials around the loop.

McDonough and Braungart (2002) made the case for upcycling, which might be understood to mean finding new uses for unwanted items such that they don’t become waste. A key point here is that the upcycled product should have a higher value than it had at the point it ceased to be wanted by the previous owner.

If you accept that definition then most of the examples of upcycling that you will find will be art projects. Picasso’s “Bull’s Head” was an early one, made from a couple of bits of an old bicycle. It’s fun, and some will say it’s art great art (personally, I’d say it’s no Guernica, but… whatever).

Pablo Picasso, 1942: Bull’s Head

So, um… yeah. All we have to do with our waste is make it all into sculptures.

This kind of upcycling does nothing to solve the problems of our age. Paul Bonomini’s “WEEE Man” conveys a powerful message about how much e-waste we each generate, but it doesn’t offer much in the way of solutions. In fact, a cynic might say it serves to keep three tonnes of material out of the recycling loop.

WEEE man sculpture at the Eden Project

It might sound like a Glaswegian term of endearment, but the WEEE Man is actually a former exhibit at the Eden Project in Cornwall, showing the amount of waste electrical and electronic equipment an average Briton will throw away in their lifetime. (No word yet on what happens to sculptures at end-of-life…)

If we all get creative and upcycle all our waste into art, we could actually increase the demand for virgin material. How much art does a society need? Taken to the extreme, we’ll be drowning in art instead of drowning in waste. This is why the ARP stretcher railings have such an important lesson for us: they haven’t been turned into something that’s only for looking at, and unlike art installations we don’t only need one: the more you reuse, the better. Also, in their new life they’ve been in use for something like seventy years, far exceeding the useful life seen in their primary purpose.

Perhaps upcycling needs a broader interpretation of value, where it’s not about price, but utility – but if we do that, there’s really not very much upcycling going on at all.

Liter of light: a bottle, refilled with water and a little bleach, brings sunlight into a room in a shanty town.Liter of light’ – the people using old lemonade bottles to make improvised light pipes – is still looking good, though.


For introducing me to the stretcher railings, thanks to fellow bloggers Peter Watts and Diarmuid Breatnach, plus the always fascinating 99% Invisible.

The Changing Shape of the Supply Chain

Some time ago, I was stuck in a meeting. Not exactly The Meeting From Hell but definitely somewhere on the outskirts, like maybe Erebus, or Tartarus. Naturally enough, I decided to use the time more meaningfully, and began doodling.

Procurement, operations, distribution: those are the three elements of a supply chain strategy, according to what we tell our students.

I drew them vertically, for a change. I’m trying to get away from showing supply chains as going from left to right, but it’s a difficult habit to break: I spent years simulating supply chains, and the software packages we used were all designed to show products as flowing from left to right – a paradigm that doesn’t do us much good, really. Workpieces flowing from top to bottom fit the language of the supply chain much better: “upstream” and “downstream”, vertical integration and so on.

Following the “big three” I added an after-sales service component. Many modern supply chains include this, and thus far we’re not looking at anything that doesn’t appear in Porter’s Value Chain… if stood on its pointy tip. (Again, getting away from the left-to-right paradigm.)

So we’ve got a natural flow: gravity-assisted through procurement, operations, distribution and after-sales service. Next, I left a gap, which I called “uncontrolled life”. This represents the part of the life of a product where it has passed beyond any formal support, but remains useful to somebody. Like a car that has passed to its second or third owner, who decides that the declining value of the vehicle means it no longer deserves the premium demanded by the dealership: an independent garage works out cheaper on a per-hour basis and may provide access to ‘clone’ or salvaged parts.

Sooner or later, though, a product becomes too broken or too obsolete to be of use. It reaches the end of its life… but the supply chain may feature an ‘end of life’ phase where components or materials are salvaged. This is a growth area – not least because of legislation that establishes extended producer responsibility.

That first diagram offers a summary of the present-day position, perhaps, but it wasn’t always this way. For example, after-sales service is a relatively new concept that could only really take off once standardisation made it possible to sell spare parts.

I started wondering about how things have changed over the years (yes, the meeting I was in offered ample time for such reflections…) and by the time I’d thought it through I had a set of distinct ages illustrated, in a not-very-scientific analysis of the relative importance of the different components of the supply chain. You can see a neat version of my next doodle here:

Supply Chain Trends. Maybe.

Before humans, there was procurement and use – the way a chimp might find and keep a stone, so as to crack nuts. In a few cases, there may have been simple operations too, such as stripping the leaves and bark off a twig before it’s used to fish termites out of their mound.

Termites – it’s what’s for dinner. [Photo: BBC / Emma Napper]

In prehistory (defined as human activity after the invention of stone tools, but before the development of writing) we added distribution: the idea that you might share something with somebody else. Also, the range of operations that might be performed is expanded by human ingenuity: we were shaping tools, making mud bricks, curing hides and so on. At this point, ’end of life’ doesn’t feature at all; you just leave waste and worn out items wherever they happen to fall. Moving on into ancient history, this changes. For the first time, some forms of waste have value. If a broken item is made from copper or bronze it can be melted down and made into something else: recycling has arrived. Distribution also increases in importance in this era, for example Bronze Age Cyprus shipping copper to the Near East and Egypt, and returning with commodities such as papyrus and wool.

Technologies change, and empires rise and fall, but the relative importance of procurement, operations and so on doesn’t appear to change until the industrial revolution, when operations become particularly significant. For the first time, having an innovative means of production is more important than having access to the raw materials. (These are accessed more readily as a result of advancements in trade and navigation.)

I decided that mass production deserved to be considered as an era in its own right, beginning about a century ago. Again, we see a growth in the relative importance of operations – plus the arrival of the service component, which begins a squeeze on the uncontrolled life element.

In the information age – our own era – operations has declined in importance, because there’s more outsourcing (procurement increases in importance) and production increasingly involves alliances. Similarly, responsibility for the distribution function is shared with third-party logistics (3PL) partners. Growth in services is observed as companies look to establish a continuing revenue stream, and there is an increased focus on the end-of-life, the two combining to further limit the uncontrolled life element.

And what does the future hold? I think it’s reasonable to assume that end-of-life issues will continue to increase in importance. Outsourcing will grow; alliances and partnerships of all kinds, too – and the uncontrolled life of products will be further squeezed via business models based on leasing rather than outright ownership.

I’m not saying I have this 100% right, and the situation pertaining in a specific industry may be different… but it’s interesting to see how things have changed, isn’t it?

Charged with Battery

As something of a model aircraft enthusiast, I’ve been hearing scare stories about lithium-ion batteries for over a decade – and they’re not just stories: every once in a while a model flier would leave a battery charger running in their vehicle, and suffer a fire that gutted it.

Any battery will get hot if subjected to an inappropriate regime of charging or discharging, but this kind poses additional hazards due to its chemical properties. I’m going to have to simplify quite a bit here, but basically the chemistry of the common lithium-ion cell leaves it vulnerable to a condition that is euphemistically termed “thermal runaway.”

Inside each cell is a cathode and an anode, separated by an electrolyte and a porous material called the separator.

If a component has a manufacturing defect, if it becomes damaged, if it’s short-circuited or perhaps if it’s made to work too hard, the electrolyte can catch fire – but that’s just the start. In the fire, the decomposition of the cathode and anode commonly release (among other things, if I have understood correctly) oxygen, and hydrogen. The release of oxygen in particular means that the more it burns… the more it burns. Naturally, the heat generated inside the cell means that its neighbours promptly get in on the act and the whole battery burns.

If this occurs in a confined space, such as that formed by the casing of a mobile ’phone, you get a small explosion – plus toxic gases released as the other components in the phone are subjected to extreme heat.

Oh – and lithium reacts with water. It’s not really going to be an issue by the time you notice that Samsung made you a smoke grenade instead of a telephone… but strictly speaking, you ought to use a powder extinguisher on a lithium fire.

In The Picture of Dorian Gray, Lord Henry says that “… there is only one thing in the world worse than being talked about, and that is not being talked about.”

But then, Lord Henry never heard of the Samsung Galaxy Note 7.

Last time I boarded a flight, they were talking about this ’phone:

“For safety reasons we don’t permit any model of the Galaxy Note 7 to be carried on board. If you’re carrying this device, please tell a member of the cabin crew.”

There are signs at check-in. There is coverage in magazines, on websites, on TV and radio. This is the kind of publicity that even Gerald Ratner would choke on.

Detail from the Emirates airline website

Detail from the front page at Emirates.com – the wrong kind of publicity

Launched on August 19th 2016, the Galaxy Note 7 was Samsung’s flagship mobile, and its specifications were impressive. Just five days later came news of a Galaxy Note 7 exploding, in South Korea. By the end of the month they had delayed shipments to South Korean carriers, although the next day the product launched in China. (Presumably this reflects a belief that the bad batteries were all to be found in a particular batch, rather than any belief that Chinese customers are inherently more fireproof or more expendable than Korean ones.)

Just a day later, Samsung announced the global recall of 2½ million ’phones, although at this stage it was voluntary. On October 6th a Southwest Airlines flight was evacuated due to smoke from a Galaxy Note 7, prompting the Federal Aviation Administration to instruct passengers not to turn on or charge the ill-fated ’phone – nor to stow it in cargo. The U.S. Consumer Product Safety Commission urged Galaxy Note 7 users to cease using their phones, and carriers including AT&T and T-Mobile withdrew them from sale.

After a series of fires in replacement devices – those that had been subjected to additional inspections and quality control measures – Samsung finally threw in the towel, suspending production of the product and then announcing its end. The withdrawal of the Galaxy Note 7 left a highly unusual gap in the market because Samsung’s rivals commonly avoid bringing out competitor products at the same time of year, so customers who received a refund had relatively few options to spend their money on. Meanwhile, Apple’s share price surged, despite a recent lukewarm reception for their latest iPhone – a device most notable for the unpopular decision to remove the headphone socket.

Part of the problem here is the very personal nature of mobile ’phones: you put a lot of personal information on them including passwords and banking details; you store photos of your loved ones; you expect people to be able to reach you; you learn your way around the quirky operating system. Nobody wants to have to delete all their personal information and preferences, and give them up. Your ’phone is closer to you, for longer, than your loved ones – and you probably sleep with it on the nightstand. The idea that it might have harmed you, and that it will be taken from you – not because you broke it or lost it but because it’s no good – that feels like a betrayal. It seems that Samsung will continue to feel the effects of this problem for a long time to come.

On Supply Chain Radio they said that the times we live in magnify Samsung’s woes, because of the perils of social media. Certainly, there have been some great jokes about Samsung’s plight (see below) but I think our interconnected age actually makes it much simpler to handle a problem of this kind. For one thing, all Galaxy Note 7 users are online, by definition: they could be reached with a message about a product recall. Contrast that with the old days, when the manufacturer of a defective car would have to take out advertisements in newspapers, to tell the world how crappy their cars were. The new approach is free, and it’s accurately targeted: it need not scare off potential customers.

Unboxing the Galaxy Note 7

Unboxing the Galaxy Note 7 [twitter user Marcianotech]

There is also the option of a software patch, delivered over the airwaves, to fix problems. Samsung tried a patch that would limit charging to 60% of capacity… but their ’phones kept on melting down, all the same.

Even when a fix can’t be achieved remotely, at least the connected nature of the surviving Galaxy Note 7’s offers a way to ensure compliance with the recall: presumably it would be simple enough to send out a software update that forces a shutdown – and once your smartphone has become a novelty paperweight (warning: keeping it near paper is probably a mistake) most users will be persuaded to swap it for something that works.

So, are all those defective telephones going to be remanufactured? No. Samsung has announded they will destroy all the returned ’phones. Given that the device sold for something like US$850, that’s an awful waste, but we’re now looking at a product that must be treated as hazardous. It can no longer be transported by air, or carried in the post. This leaves returned Galaxy Note 7’s scattered, rendering remanufacture uneconomical. Presumably, some recycling can still take place, if only to  salvage some of the more valuable metals – but almost all of the effort that went into making these ingenious devices is wasted.

Samsung Galaxy S7, burnt

Nothing beats that new gadget smell…

When Apple laptops were found to have hazardous batteries in 2006, they were quick to point out that the batteries in question had been made by Sony. Samsung has no such luxury: the Korean giant’s batteries were made by a subsidiary. Also, the remedy for Apple’s older laptops was relatively simple because the battery was removable. Samsung only recently switched over to a sealed in battery – presumably for reasons of waterproofing – and this has magnified their pain.

According to Credit Suisse, Samsung will have have lost nearly US$17 billion in revenue as a result of these problems.

Efforts to pack still more energy into a smaller, lighter devices continue.

The Circular Economy: n, o, p, and q

Such a nice idea, isn’t it? That the byproducts from everything that you need are useful and valuable elsewhere within the system that sustains us all. No waste, no pollution.

No more throwing things away, because (other than a very few, very expensive space probes) humanity hasn’t yet worked out how to send things away.

So how do we turn something linear into something circular?

Natural systems manage to be (more-or-less) circular: the water cycle, for example: evaporation, condensation and precipitation, over and over for billions of years. Or fish in the sea: left to themselves, the various species of fish would fill all the different niches where we have now made them scarce, and natural levels of predation would merely make room for more fish.

Cyclic systems must work, because the natural world got along fine before Charles Darwin, Sir David Attenborough or the Common Fisheries Policy. Long before conscious study and intervention, many species were happily chalking up a span of a million years or more, with plenty of diversity.

Then along comes a species that supplemented the natural cycles with a new one. Animals had used tools before, but one animal didn’t merely make use of sticks and stones that happened to be lying around: man acquired the ability to think ahead, and to shape complex tools that couldn’t have occurred naturally.

I want to use the Acheulean handaxe to illustrate the point because this very early, very simple machine shows something fundamental about human technology: it’s not cyclic. If you were butchering a carcass with your handaxe and you broke it on a stubborn bone, or you decided that it had become too blunt, you had to get a new one. (You could, perhaps, chip another flake off to reveal a new sharp edge, but your axe would become smaller if you did this.) Thus, at the dawn of man, people were acting in more-or-less the same way as we do when we go to Phones4U and request an upgrade. This one’s no good: get a new one.

Flint hand axe

Prototype Swiss Army Knife, circa 750,000 BCE

You can’t recycle a broken flint handaxe. The Earth will do it for you via erosion and the compression of sedimentary rock, but that doesn’t happen on any sort of timescale that a mere species can take an interest in. Instead, you go and get more raw materials from out of the ground.

Interestingly, in the Olduvai Gorge in Tanzania where handaxes were first made, the materials were ten kilometres from any settlement. Even back then, it seems we had logistics and procurement, as well as waste.

You might be tempted to dismiss this example on the grounds that we’re better than this nowadays. It’s true that the bronze age brought us tools that could be reforged, but for the vast majority of human history the stone handaxe was the only device there was, and you couldn’t remake a handaxe any more than you can turn fired pottery back into clay, or make bread out of burnt toast.

We take the raw materials we need, make our devices, wear them out, throw them away, and start again. This is called the linear economy, and we still apply it today. For a while, recycling was an option, but nowadays many modern products are a mass of different materials, not readily or economically separated.

Technology has given us all kinds of good things like dentistry, family planning and communications. Almost nobody would advocate a return to the simpler technologies of an earlier age, but many of the things that we enjoy nowadays come with an environmental price, because they are the product of a linear economy.

Our supply chains are exactly that: supply chains, not supply loops.

Heavy machinery at a landfill site

How’s recycling working out, where you live?

You can think of the single useful life that is obtained from many materials as being like an arc: it comes out of the ground, enters into a period of usefulness, ceases to be useful, and returns to the earth. It’s an ’n’ shape.

the n-shaped economy

Under the ‘n’-shaped economy, materials describe a brief arc of usefulness, before returning to the ground

The archetype for the circular economy is an ’o’ shape, which sees items or materials going round and round ad infinitum. It’s a nice idea, but it’s wholly idealised. Getting something from nothing isn’t realistic because even if you never waste anything again, the materials you depend upon came out of the ground at some point. Statistically, we all (as citizens of planet Earth) own something like 80kg of aluminium… yet two hundred years ago, nobody had ever seen any. Recycling is essential with this costly and energy-intensive material… but it wasn’t always an option: the pump had to be primed.

The ‘o’-shaped, circular economy

The ‘o’-shaped, circular economy may be difficult to realise, with complex products

Thus, the circular economy that supersedes the ’n’ shape isn’t really an ‘o’, but more of a ‘p’. Materials must be taken out of the ground if they are to ascend into a useful cycle. 

The ‘p’-shaped economy

The ‘p’-shaped economy may be more realistic, recognising that cycles have to begin from something…

Even then, that’s not the happy ending of the story. Although your product may be more throughly sustainable, fairtrade, non-toxic, homespun, low-carbon, vegan, recycled and eco-labelled than Jeremy Corbyn’s moustache, there’s always a bit of entropy in any system. Materials wear away, or get contaminated, or mixed together in a way that changes them for good – or they get destroyed in accidents, or simply lost. If the circular economy is truly an economy, then you have to accept that people are going to buy or lease your products and take them away and use them in unanticipated ways.

The ‘q’-shaped model

The ‘q’-shaped model recognises that even though you reuse and recycle as much as possible, entropy awaits

Like zero defects or full employment, the circular economy is unattainable, but it’s a neat way to express an aspiration. In reality, it’s not an ‘o’ shape at all, but if we apply enough ingenuity we might manage a shape that looks something like “pooooq” – a shape that describes lots of useful ‘orbits’ before entropy sets in at last.

The ‘pooooq-shaped economy’

The ‘pooooq’ economy: our best-case scenario sees redesigned products being used the maximum number of times, before they eventually become unfit to serve.

I once heard a guest speaker (and I wish I could remember who it was… Professor Bernard Hon, maybe?) who told us that a car’s electric window-winder mechanism was an ideal candidate for component reuse. It’s hidden away inside the door, so the Fashion Police can’t make a fuss that it isn’t the latest type. Car window winder mechanisms are reasonably durable, because of course it would reflect badly upon the brand if they failed… but how much more would it cost to make a window actuator that was designed to last through not just the life of the car, but through the life of five cars, with the unit being extracted and refitted four more times?

Twenty percent extra, our guest speaker said. But if that’s true, who pays for the current practice whereby an end-of-life vehicle gets shredded and the parts are either melted down or burnt in the name of energy recovery?

Car window actuator

Everything you ever wanted to know about automotive window actuators may be a mere click away.

We all pay. Motorists, for sure, but in fact everyone who needs commodities such as materials and energy… which means all of us.

It seems we’re barely out of the bronze age. Some people and organisations are showing that it’s possible to be ‘greener’, but many items are no more likely to be reused than a worn out Acheulean handaxe. Of course, we’re new at this: it’s only been seven thousand years since we started working with metals.

Perhaps we’ll crack this Circular Economy thing yet – and perhaps evaluating our efforts in terms of ’n’, ‘o’, ‘p’ and ‘q’ will help.

No way to treat an old lady

As I departed Kuala Lumpur recently, our ’plane taxied past a very forlorn looking Boeing 747. It’s abundantly clear when a ’plane is never going to fly again: grime accumulates on all the upper surfaces, while the tailfin is painted in a drab, uniform colour that conceals the branding of the aircraft’s former owner – because a ’plane at the end of its life is a poor advertisement for the airline. Often, the nacelles are left gaping after the engines have been removed, too.

That ’plane, and two others like it, are in the news this week: Malaysia Airports have taken out newspaper advertising, inviting the unknown owners to claim their aircraft within fourteen days or see them disposed of.

Malaysia Star newspaper notice

Eviction notice: substantial landing and parking fees are owed.

It’s easy to talk about the end-of-life for vehicles, appliances and the like, but it’s more complicated for aircraft. Some are parked up in deserts for years, where the dry conditions minimise corrosion. In a changeable business climate, the hope is that some will return to service later on. Others are are stripped of valuable parts (nowadays, that mostly means engines) and then broken up for scrap. Where an aircraft is stranded at an airport, though, with parking charges accumulating daily, it’s simply not possible to be sentimental: if a buyer can’t be found an excavator or two will make short work of the ‘Queen of the Skies’.

Boeing, boeing... gone in 3-4 days [image: Daily Mail]

Boeing, boeing… gone in 3-4 days [image: Daily Mail]

This is going on all the time, and the recycling rates are actually quite impressive… but the speed with which Boeing 747s are now disappearing from our airports and our skies is surprising – and the 747 isn’t just any old aeroplane. When the 747 goes, it marks the end of an era. This was the ubiquitous ’plane that became a unit of measure in its own right. (What would British journalists do if they couldn’t describe the size of things by inviting comparison with Jumbo Jets, football pitches and double-decker buses?)

For a machine that first flew in 1969 it’s had a good run, with 1,519 aircraft delivered – at a present-day list price of over $350 million a pop. Not bad for a machine that can trace its roots back to 1963, and design work done for a military project where Boeing didn’t succeed: it was the requirements of the CX-Heavy Logistics System that gave the later 747 its distinctive ‘hump’ – originally because of the need for a cavernous cargo bay on the main deck, with front loading. The contract for the military transport aircraft went to Lockheed, as the C-5 Galaxy… but some aspects of the CX-HLS design can still be seen in the DNA of the 747.

An early campaigner for the large passenger jet was Pan Am’s president, Juan Trippe. He saw large capacity aircraft as a solution to airport congestion (sound familiar?) and ordered the first twenty-five, back in 1966. Back when the 747 only existed on paper, that is – and when the company didn’t have a plant big enough to assemble it, either. The difficulties they had to overcome were staggering… but they managed it, and 747s began to carry passengers in 1970.

Forty-five years is a long time in aviation, and even with a relatively recent upgrade in the form of the 747-8, it seems that the writing is on the wall. Just two were ordered this year, and none at all the year before. Peak production occurred in 1980, with 73 aircraft delivered; peak orders were 122, in 1990. With just twenty outstanding orders, now, Boeing probably won’t be able to keep the production line open for much longer.

So what new aeroplane has stolen away the market for the 747? Actually, it’s an aeroplane that’s already twenty years old: the Boeing 777. It’s smaller than the 747, but not by much, and it incorporates two engines (with very large turbofans) instead of four. That means airlines save on fuel usage and maintenance costs, as well as paying a lower price to acquire a ’plane. I was in a 777 when we taxied past that clapped-out old 747 in Kuala Lumpur. Thus far, Boeing has delivered 1,355 of the smaller jet, and there are hundreds more on order. This is the ’plane I used to refer to frequently when teaching Concurrent Engineering, thanks to Karl Sabbagh’s book, 21st Century Jet: The Making of the Boeing 777. (Boeing called it “working together”, but it was classic Concurrent Engineering, and the result was a world-beating aeroplane.)

Formerly, when an older aeroplane was no longer wanted for use on passenger routes, it stood a good chance of putting in a few years of service as a freighter. Now, that’s by no means guaranteed. Again, the 777 is the culprit. The freighter variant of the 777 scores over the 747 for the same reasons as it does in passenger usage, but there’s also the issue of belly cargo capacity for passenger flights. A passenger airline can squeeze 202 cubic meters of freight (or luggage) into a 777-300ER, as well as carrying passengers, so that’s a valuable additional revenue stream.

By contrast, an upper deck full of passengers on a 747 (or an A380 for that matter) adds weight, but does nothing to improve the cargo capacity… and you’re still stuck with those four expensive engines.

Relative size of the 777, 747 and A380

Relative size of the Boeing 777 and 747, and the Airbus A380

A dedicated freighter benefits from larger doors and the option of flying routes and times that aren’t attractive to passengers, but there’s no opportunity of cross-subsidy: the freight must pay its way, every time. This article in Supply Chain Brain described the air-cargo freighter as an ‘endangered species’… and that means fewer freight conversions, and faster retirements for converted aeroplanes now in service. All this accelerates the process by which the 747 will become a rare bird indeed.

Even at a time when oil is crazy-cheap (Brent crude is under $40 a barrel as I write this), it seems that for most applications four-engined aircraft are out, and two-engined is the way to go. There’s only one customer I can think of who absolutely demands four engined aircraft, and that’s the U.S. Presidential Airlift Group. They recently brought their replacement process forward, to ensure that they would still be able to obtain 747s: this purchase was the source of the order for two 747s in January of this year.

The simple fact is that engines have come a long way since the 1960s, and nowadays two are plenty. ETOPS (Extended Time On Partial Systems) rulings determine what routes an aircraft can fly, taking into account distance from airports that might be diverted to in an emergency. If you’re an industry insider, you probably refer to the standard by its other name: Engines Turn Or Passengers Swim. It’s an important historical detail because of the US Civil Aviation Authority’s “60-minute rule” of 1953: that the flight path of twin-engined aircraft should not be farther than 60 minutes of flying time from an adequate airport. Thus, in the 1960s and 70s an airline wanted three- or four-engined jetliners if it was to cross oceans and the like, but this requirement is now greatly reduced.

Some 747s will still be in service for a good while yet. Some will find niche jobs such as the former Virgin Atlantic 747-400 recently announced as due for conversion into an airborne satellite launcher… but many are disappearing. Air France, once a major user of the 747 has only a single 747-based service on their schedule this winter, going between Paris and Mexico City. Passengers reports (available on SeatGuru, if you’re feeling nerdy) include failed in-flight entertainment, and a recent cancellation due to engine failure: symptoms of an aircraft approaching the end of its useful life.

Sure enough, Air France just announced that a special tribute flight on January 14th next year will mark the end of the 747 era for them. British Airways have chosen to refurbish eighteen of their Boeing 747-400s… which is a nice way to say they’re halving the size of their present-day fleet. That’s another batch of 747s for the breaker’s yard, then. Perhaps some of them will find new life, one way or another…

The 747 Wing House

American architect David Randall Hertz Turned a former Pan Am 747 into ‘The 747 Wing House’, in the Santa Monica Mountains.

 

Need affordable yet distinctive accommodation in Stockholm? Look no further than the Jumbo Stay hostel...

Need affordable yet distinctive accommodation in Stockholm? Look no further than the Jumbo Stay hostel… it’s handy for the airport, too!

 

Table featuring an upcycled turbofan

Or you could always make some furniture out of aircraft parts…

 

Lufthansa, Korean Air and Air China will continue to operate the updated 747-8s that they bought more recently, but the price of oil won’t stay low forever: not least because its current low level is preventing oil industry investment, and that hints at a future shortage.

If, presently, we see another price spike like the one that peaked in July 2008… what would you make out of an unwanted 747?